If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20b^2-8b-64=0
a = 20; b = -8; c = -64;
Δ = b2-4ac
Δ = -82-4·20·(-64)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-72}{2*20}=\frac{-64}{40} =-1+3/5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+72}{2*20}=\frac{80}{40} =2 $
| 3/8=x-5/12 | | 8-m/6=22 | | -2x+1=-4x+9* | | 13b-59=b-23 | | (x+1)/8=3 | | 92÷x-7=16 | | 11=3/5(6x+10) | | 2(g+7)=5+g | | x+x+4+9x=180 | | 4x–5=2x+3 | | 8x+56=15x | | n/4+8=12 | | X+.12x=26,190 | | 4n-7+1=6 | | .12x=26,190 | | 8-x2=24 | | n4+ 8= 12 | | -4x+6(x+2=20 | | 4x-96=12 | | 14x-6x-12=5x-15 | | 3(h-6)=2(5h-2) | | 205=10(x-50)+55 | | 0=16t^2+96t+203 | | 3+x/5=-4 | | 0=1/4(t^2-2t+15) | | 2(7x-3x-2)=5(x-3) | | v+48=9v | | 6=u+2 | | 10v-4v=54 | | C=38.89+0.50x | | -8x=4x+48 | | (x)+(9x)+(x+4)=180 |